On the equivalence between the energy and virial routes to the equation of state of hard-sphere fluids.
نویسنده
چکیده
The energy route to the equation of state of hard-sphere fluids is ill defined since the internal energy is just that of an ideal gas, and thus it is independent of density. It is shown that this ambiguity can be avoided by considering a square-shoulder interaction and taking the limit of vanishing shoulder width. The resulting hard-sphere equation of state coincides exactly with the one obtained through the virial route. Therefore, the energy and virial routes to the equation of state of hard-sphere fluids can be considered as equivalent.
منابع مشابه
An Improved ISM Equation of State for Polar Fluids
We developed an equation of state (EOS) by Ihm, Song, and Mason (ISM) for polar fluids. The model consists of four parameters, namely, the second virial coefficient, an effective van der Waals co-volume, a scaling factor, and the reduced dipole moment. The second virial coefficient is calculated from a correlation that uses the heat of vaporization, and the liquid density at the normal boiling ...
متن کاملApplication of Carnahan-Starling-vdW-β Equation of State for Refrigerant Fluids
Herein, the application of Carnahan-Starling-vdW-β equation of state (EoS) for 13 refrigerant fluids was investigated. The EoS could predict the saturated liquid densities of these refrigerants over the temperature range of 100-400 K and pressures from zero up to187 MPa with the average absolute deviations of 2.66%. The accuracy of Carnahan-Starling-vdW-β EoS in liquid density prediction was al...
متن کاملAnalytic Equation of State for the Square-well Plus Sutherland Fluid from Perturbation Theory
Analytic expressions were derived for the compressibility factor and residual internal energy of the square-well plus Sutherland fluid. In this derivation, we used the second order Barker-Henderson perturbation theory based on the macroscopic compressibility approximation together with an analytical expression for radial distribution function of the reference hard sphere fluid. These properties...
متن کاملChemical-potential route for multicomponent fluids.
The chemical potentials of multicomponent fluids are derived in terms of the pair correlation functions for arbitrary number of components, interaction potentials, and dimensionality. The formally exact result is particularized to hard-sphere mixtures with zero or positive nonadditivity. As a simple application, the chemical potentials of three-dimensional additive hard-sphere mixtures are deri...
متن کاملEquation of state for hard-sphere fluids offering accurate virial coefficients.
The asymptotic expansion method is extended by using currently available accurate values for the first ten virial coefficients for hard sphere fluids. It is then used to yield an equation of state for hard sphere fluids, which accurately represents the currently accepted values for the first sixteen virial coefficients and compressibility factor data in both the stable and the metastable region...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 123 10 شماره
صفحات -
تاریخ انتشار 2005